Impact of spatially constrained sampling of temporal contact networks on the evaluation of the epidemic risk

C. Vestergaard, E. Valdano, M. Génois, C. Poletto, V. Colizza, A. Barrat, European Journal of Applied Mathematics 27, 941 (2016)

The ability to directly record human face-to-face interactions increasingly enables the development of detailed data-driven models for the spread of directly transmitted infectious diseases at the scale of individuals. Complete coverage of the contacts occurring in a population is however generally unattainable, due for instance to limited participation rates or experimental constraints in spatial coverage. Here, we study the impact of spatially constrained sampling on our ability to estimate the epidemic risk in a population using such detailed data-driven models. The epidemic risk is quantified by the epidemic threshold of the SIRS model for the propagation of communicable diseases, i.e. the critical value of disease transmissibility above which the disease turns endemic. We verify for both synthetic and empirical data of human interactions that the use of incomplete data sets due to spatial sampling leads to the underestimation of the epidemic risk. The bias is however smaller than the one obtained by uniformly sampling the same fraction of contacts: it depends non-linearly on the fraction of contacts that are recorded, and becomes negligible if this fraction is large enough. Moreover, it depends on the interplay between the timescales of population and spreading dynamics.


URL: https://www.cambridge.org/core/journals/european-journal-of-applied-mathematics/article/impact-of-spatially-constrained-sampling-of-temporal-contact-networks-on-the-evaluation-of-the-epidemic-risk/D9615D2D225FFF04679EDA5064D4141E

BIBTEX:

@article{EJM:10391502,
author = {VESTERGAARD,CHRISTIAN L. and VALDANO,EUGENIO and GÉNOIS,MATHIEU and POLETTO,CHIARA and COLIZZA,VITTORIA and BARRAT,ALAIN},
title = {Impact of spatially constrained sampling of temporal contact networks on the evaluation of the epidemic risk},
journal = {European Journal of Applied Mathematics},
volume = {27},
year = {2016},
issn = {1469-4425},
pages = {941--957},
numpages = {17},
doi = {10.1017/S0956792516000309},
URL = {https://www.cambridge.org/core/journals/european-journal-of-applied-mathematics/article/impact-of-spatially-constrained-sampling-of-temporal-contact-networks-on-the-evaluation-of-the-epidemic-risk/D9615D2D225FFF04679EDA5064D4141E},
}

PUBLICATIONS

Estimating the epidemic risk using non-uniformly sampled contact data
Recalibrating disease parameters for increasing realism in modeling epidemics in closed settings
School closure policies at municipality level for mitigating influenza spread: a model-based evaluation
Contact diaries versus wearable proximity sensors in measuring contact patterns at a conference: method comparison and participants’ attitudes
Impact of spatially constrained sampling of temporal contact networks on the evaluation of the epidemic risk
How to Estimate Epidemic Risk from Incomplete Contact Diaries Data?
Quantifying social contacts in a household setting of rural Kenya using wearable proximity sensors
Epidemic risk from friendship network data: an equivalence with a non-uniform sampling of contact networks
Compensating for population sampling in simulations of epidemic spread on temporal contact networks
Enhancing the evaluation of pathogen transmission risk in a hospital by merging hand-hygiene compliance and contact data: a proof-of-concept study
Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys
Data on face-to-face contacts in an office building suggest a low-cost vaccination strategy based on community linkers
Is Web Content a Good Proxy for Real-Life Interaction? A Case Study Considering Online and Offline Interactions of Computer Scientists
Combining High-Resolution Contact Data with Virological Data to Investigate Influenza Transmission in a Tertiary Care Hospital
Mental health and social networks in early adolescence: A dynamic study of objectively-measured social interaction behaviors
Mitigation of infectious disease at school: targeted class closure vs school closure
How memory generates heterogeneous dynamics in temporal networks
Contact patterns among high school students
Detecting the Community Structure and Activity Patterns of Temporal Networks: A Non-Negative Tensor Factorization Approach
Measuring contact patterns with wearable sensors: methods, data characteristics and applications to data-driven simulations of infectious diseases
Bootstrapping under constraint for the assessment of group behavior in human contact networks
Immunization strategies for epidemic processes in time-varying contact networks
Activity clocks: spreading dynamics on temporal networks of human contact
Gender homophily from spatial behavior in a primary school: a sociometric study
Estimating Potential Infection Transmission Routes in Hospital Wards Using Wearable Proximity Sensors
Empirical temporal networks of face-to-face human interactions
New Insights and Methods for Predicting Face-To-Face Contacts
Time-varying Social Networks in a Graph Database – A Neo4j Use Case
Temporal networks of face-to-face human interactions
An infectious disease model on empirical networks of human contact: bridging the gap between dynamic network data and contact matrices
Fingerprinting temporal networks of close-range human proximity
Digital Epidemiology
Random Walks on Temporal Networks
The making of Sixty-Nine Days Of Close Encounters At The Science Gallery.
High-Resolution Measurements of Face-to-Face Contact Patterns in a Primary School.
Simulation of an SEIR Infectious Disease Model on the Dynamic Contact Network of Conference Attendees.
On the Dynamics of Human Proximity for Data Diffusion in Ad-Hoc Networks.
Close Encounters in a Pediatric Ward: Measuring Face-to-Face Proximity and Mixing Patterns with Wearable Sensors.
What’s in a Crowd? Analysis of Face-to-Face Behavioral Networks.
Wearable Sensor Networks for Measuring Face-to-Face Contact Patterns in Healthcare Settings.
Social Dynamics in Conferences: Analysis of Data from the Live Social Semantics Application.
Providing Enhanced Social Interaction Services for Industry Exhibitors at large Medical Conferences.
Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks.
Semantics, Sensors, and the Social Web: The Live Social Semantics Experiments.
The Live Social Semantics Application: a Platform for Integrating Face-to-Face Presence with On-Line Social Networking
Live Social Semantics
High Resolution Dynamical Mapping of Social Interactions With Active RFID.